contoh soal pertidaksamaan rasional (pecahan)contoh soalcontoh soal pertidaksamaan rasional (pecahan)contoh soal pertidaksamaan irrasionalcontoh soal pertidaksamaan mutlak
1. contoh soal pertidaksamaan rasional (pecahan)contoh soalcontoh soal pertidaksamaan rasional (pecahan)contoh soal pertidaksamaan irrasionalcontoh soal pertidaksamaan mutlak
Contoh 2 :Tentukan himpunan penyelesaia dari ,
[Penyelesaian]
Dari (1)(2) dan (3):
Contoh 3 :Tentukanlah himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Dari (1) dan (2) :
Contoh 4
Tentukan himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) dan (2) :
Bagaimana jika menentukan himpunan penyelesaian pertidaksamaan irasional dengan fungsi nilai mutlak? Simak contoh dibawah ini :
Contoh 5:
Tentukan himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Pada pertidaksamaan ini hanya dipenuhi oleh :
Contoh 6
Tentukan Himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) ,(2)dan (3) :
Soal-soal diatas sering muncul pada soal-soal Ujian Nasional SMA, soal saringan Masuk perguruan tinggi negeri (SNMPTN). Oleh karena itu sangatlah penting menguasai materi pertidaksamaan irasional.
2. contoh soal pertidaksamaan rasional (pecahan)contoh soalcontoh soal pertidaksamaan rasional (pecahan)contoh soal pertidaksamaan irrasionalcontoh soal pertidaksamaan mutlak
Contoh 2 :Tentukan himpunan penyelesaia dari ,
[Penyelesaian]
Dari (1)(2) dan (3):
Contoh 3 :Tentukanlah himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Dari (1) dan (2) :
Contoh 4
Tentukan himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) dan (2) :
Bagaimana jika menentukan himpunan penyelesaian pertidaksamaan irasional dengan fungsi nilai mutlak? Simak contoh dibawah ini :
Contoh 5:
Tentukan himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Pada pertidaksamaan ini hanya dipenuhi oleh :
Contoh 6
Tentukan Himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) ,(2)dan (3) :
Soal-soal diatas sering muncul pada soal-soal Ujian Nasional SMA, soal saringan Masuk perguruan tinggi negeri (SNMPTN). Oleh karena itu sangatlah penting menguasai materi pertidaksamaan irasional.
3. contoh soal rasional pertidaksamaan Rasional dan jawaban
soal rasional
3/√2 = ...
3/√2 x √2/√2 = 3√2/2
dan
3/√x > 0 , x≠0
3/√x . √x/√x > 0
3√x/x > 0
maka, x>0
4. contoh 2 soal pertidaksamaan rasional dan penyelesaian
hp contoh ke 2∴ HP = {1212 < x < 4}
5. Contoh soal cerita pertidaksamaan rasional
contoh soalnya banyak terdapat di buku kelas x cari di mbah gogle
6. contoh soal petidaksamaan nilai mutlak dan rasional
Tentukan HP dari x−3x+1x−3x+1 ≥ 0
Jawab :
Pembuat nol :
x − 3 = 0 ⇒ x = 3
x + 1 = 0 ⇒ x = −1
Syarat :
x + 1 ≠ 0 ⇒ x ≠ −1
Untuk interval x < −1, ambil x = −2 :
−2−3−2+1−2−3−2+1 = 5 (+)
Untuk interval −1 < x ≤ 3, ambil x = 0 :
0−30+10−30+1 = −3 (−)
Untuk interval x > 3, ambil x = 4 :
4−34+14−34+1 = 1515 (+)
Karena pertidaksamaan bertanda "≥", maka daerah penyelesaian berada pada interval yang bertanda (+).
∴ HP = {x < −1 atau x ≥ 3}
7. Contoh 5 soal pertidaksamaan rasional!
Jawaban:
pertidaksamaan rasional dapat dilakukan dengan langkah-langkah dibawah ini:
Tentukan syarat pertidaksamaan.
Tentukan pembuat nol
Buat garis bilangan
Tentukan interval yang memenuhi berdasarkan garis bilangan
Contoh soal persamaan rasional
Contoh soal 1
Tentukan nilai x yang memenuhi persamaan rasional
x – 1 ×3
____ -____= 0
2 4
Penyelesaian soal
Untuk menjawab soal ini kita gunakan metode pindah ruas dan kali silang. Ketika memindahkan angka atau variabel dari satu ruas ke ruas lainnya kita ganda negatif menjadi positif atau sebaliknya. Jadi jawaban soal diatas sebagai berikut:
→
x – 1 3×
____ = ___ = 0
2 4
→ 4 (x – 1) = 2. 3x
→ 4x – 4 = 6x
→ 4x – 6x = 4
→ -2x = 4
→ x = 4/2 = -2
Contoh soal 2
Tentukan nilai x yang memenuhi persamaan rasional dibawah ini.
1. x + 1
___ = 2
x – 2
2. 2x – 4
_____ = 4
x + 1
Penyelesaian soal
Cara menjawab soal 1 sebagai berikut:
x + 1 = 2 (x – 2) atau x + 1 = 2x – 4
x – 2x = -4 – 1
-x = -5
x = 5
Cara menjawab soal 2 sebagai berikut:
2x – 4 = 4 (x + 1)
2x – 4 = 4x + 4
2x – 4x = 4 + 4
-2x = 8
x = 8/-2 = -4
Penjelasan dengan langkah-langkah:
maaf klo salah...
8. contoh soal pertidaksamaan rasional beserta penjelasannya
contohnya
1/4+1/2<5
samakan penyebut di ruas kiri
1/4+2/4<5
3/4<5
terbukti
9. contoh soal pertidaksamaan rasional dengan jawaban nya ?
Contoh 2 :Tentukan himpunan penyelesaia dari ,
[Penyelesaian]
Dari (1)(2) dan (3):
Contoh 3 :Tentukanlah himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Dari (1) dan (2) :
Contoh 4
Tentukan himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) dan (2) :
Bagaimana jika menentukan himpunan penyelesaian pertidaksamaan irasional dengan fungsi nilai mutlak? Simak contoh dibawah ini :
Contoh 5:
Tentukan himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Pada pertidaksamaan ini hanya dipenuhi oleh :
Contoh 6
Tentukan Himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) ,(2)dan (3) :
Soal-soal diatas sering muncul pada soal-soal Ujian Nasional SMA, soal saringan Masuk perguruan tinggi negeri (SNMPTN). Oleh karena itu sangatlah penting menguasai materi pertidaksamaan irasional.akar dari 64 = 8/1 itu adalah bilngan rasional.
10. contoh soal pertidaksamaan rasional
1. x2+3x-10<0
2. x2-5x<-6
11. Contoh soal pertidaksamaan rasional dan pembahasannya
Soal : 2x - 4 > 6x - 8 , Pembahasan -4x > -4 , 4x < 4 , x < 1 .Jawaban : x < 1
12. pertidaksamaan rasional satu variabel dan contoh soal
2x + 4 < 6
2x < 6 - 4
2x < 2
x < 2 : 2
x < 1
13. Tuliskan contoh soal pertidaksamaan rasional beserta penyelesaiannya!
x >0 ; y>0 ;3x + 8y < 24
=
3x+8y=24
8y = 24
y = 3
=
3x+8y=24
3x = 24
x= 8
Tentukan HP dari x−5x2+6x+9≤0x−5x2+6x+9≤0
Jawab :
x−5(x+3)(x+3)≤0x−5(x+3)(x+3)≤0
Pembuat nol :
x − 5 = 0 ⇒ x = 5
(x + 3)(x + 3) = 0 ⇒ x = −3
Syarat :
(x + 3)(x + 3) ≠ 0 ⇒ x ≠ −3
Karena pertidaksamaan bertanda "≤", maka daerah penyelesaian berada pada interval yang bertanda (−).
HP = {x < −3 atau −3 < x ≤ 5} atau
HP = {x ≤ 5 dan x ≠ −3}
14. Contoh soal Pertidaksamaan Rasional?
.1. Nilai x yang memenuhi 2x – 5 < 7 adalah
2. Penyelesaian pertidaksamaan 10 – 3x > -2 adalah
3. Batas-batas x yang memenuhi pertidaksamaan 4x – 3 < 9x + 22 adalah …
4. Nilai x yang memenuhi pertidaksamaan 3x + 2 < x – 5 < x + 3 adalah …
5. Himpunan penyelesaian pertidaksamaan x² + 5x > x (6 + x) + 7 adalah … .1. Nilai x yang memenuhi 2x – 5 < 7 adalah
2. Penyelesaian pertidaksamaan 10 – 3x > -2 adalah
3. Batas-batas x yang memenuhi pertidaksamaan 4x – 3 < 9x + 22 adalah …
4. Nilai x yang memenuhi pertidaksamaan 3x + 2 < x – 5 < x + 3 adalah …
5. Himpunan penyelesaian pertidaksamaan x² + 5x > x (6 + x) + 7 adalah …
15. contoh soal pertidaksamaan rasional
Jawaban:
Pertidaksamaan rasional adalah suatu bentuk pertidaksamaan yang memuat fungsi rasional, yaitu fungsi yang dapat dinyatakan dalam bentuk
f(x)
g(x)
dengan syarat g(x) ≠ 0.
16. contoh soal dan penyelesaian pertidaksamaan rasional dan irasional
Kelas : 10
Mapel : Matematika
Kategori : Pertidaksamaan
Kata Kunci : pertidaksamaan, rasional, irasional
Kode : 10.2.4 [Kelas 10 Matematika KTSP - Pertidaksamaan]
Pembahasan :
Bentuk umum pertidaksamaan bentuk rasional atau hasil bagi dua faktor linier adalah
[tex] \frac{ax+b}{cx+d} [/tex] < 0,
[tex] \frac{ax+b}{cx+d} [/tex] > 0,
[tex] \frac{ax+b}{cx+d} [/tex] ≤ 0,
[tex] \frac{ax+b}{cx+d} [/tex] ≥ 0,
dengan cx + d ≠ 0.
Pertidaksamaan berbentuk
[tex] \frac{ax+b}{cx+d} [/tex] < 0
⇔ (ax + b)(cx + d) < 0
sehingga penyelesaiannya [tex] \frac{-d}{c} [/tex] < x < [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] ≤ 0
⇔ (ax + b)(cx + d) ≤ 0
sehingga penyelesaiannya [tex] \frac{-d}{c} [/tex] < x ≤ [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] > 0
⇔ (ax + b)(cx + d) > 0
sehingga penyelesaiannya x < [tex] \frac{-d}{c} [/tex] atau x > [tex] \frac{-b}{a} [/tex].
[tex] \frac{ax+b}{cx+d} [/tex] ≥ 0
⇔ (ax + b)(cx + d) ≥ 0
sehingga penyelesaiannya x < [tex] \frac{-d}{c} [/tex] atau x ≥ [tex] \frac{-b}{a} [/tex].
Contoh : https://brainly.co.id/tugas/12730078
Bentuk umum pertidaksamaan bentuk irasional atau bentuk akar adalah
Jika [tex] \sqrt{f(x)} [/tex] > a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) > a²;
Jika [tex] \sqrt{f(x)} [/tex] ≥ a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) ≥ a²,
Jika [tex] \sqrt{f(x)} [/tex] < a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) < a² atau 0 ≤ f(x) < a²,
Jika [tex] \sqrt{f(x)} [/tex] ≤ a dan a ≥ 0, maka f(x) ≥ 0 dan f(x) ≤ a² atau 0 ≤ f(x) ≤ a²,
Jika [tex] \sqrt{f(x)} [/tex] < [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) < g(x),
Jika [tex] \sqrt{f(x)} [/tex] > [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) > g(x),
Jika [tex] \sqrt{f(x)} [/tex] ≤ [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) ≤ g(x),
Jika [tex] \sqrt{f(x)} [/tex] ≥ [tex] \sqrt{g(x)} [/tex], maka f(x) ≥ 0, g(x) ≥ 0, dan f(x) ≥ g(x).
Contoh : https://brainly.co.id/tugas/7144413
Semangat!
Stop Copy Paste!
17. contoh soal cerita pertidaksamaan rasional dan irasional
KLO irasional itu berarti tak tau jika rasional tau. semoga bermanfaat!
18. Contoh soal pertidaksamaan rasional dan irasional beserta pembahasan
Jawab:
gambar 1 : Rasional
gamabr 2 : irisioanal
19. buat 5 contoh soal pertidaksamaan rasional linear
x + 3 < 105x - 2 > 204x + 2 ≤ 3x + 107x - 5 < 15x + 4x/5 + 1 ≥ 2x/3 - 2
Jawaban:
1. Apabila x > 2, maka x + 2 > 4
2. Jika x < -1, maka 3x + 1 > 2
3. Jika x < 2, maka x - 3 < -1
4. Apabila x > -3, maka x^2 - 1 > 8
5. Jika x > 1, maka 2x + 5 < 17
20. contoh soal pertidaksamaan rasional (pecahan)contoh soal pertidaksamaan irrasionalcontoh soal pertidaksamaan mutlak
Contoh 2 :Tentukan himpunan penyelesaia dari ,
[Penyelesaian]
Dari (1)(2) dan (3):
Contoh 3 :Tentukanlah himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Dari (1) dan (2) :
Contoh 4
Tentukan himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) dan (2) :
Bagaimana jika menentukan himpunan penyelesaian pertidaksamaan irasional dengan fungsi nilai mutlak? Simak contoh dibawah ini :
Contoh 5:
Tentukan himpunan penyelesaian pertidaksamaan irasional,
[Penyelesaian]
Pada pertidaksamaan ini hanya dipenuhi oleh :
Contoh 6
Tentukan Himpunan penyelesaian dari,
[Penyelesaian]
Dari (1) ,(2)dan (3) :
Soal-soal diatas sering muncul pada soal-soal Ujian Nasional SMA, soal saringan Masuk perguruan tinggi negeri (SNMPTN). Oleh karena itu sangatlah penting menguasai materi pertidaksamaan irasional.akar dari 64, yaitu 8 delapan adalah bilangan rasional