Fungsi Komposisi Dan Invers

Fungsi Komposisi Dan Invers

komposisi fungsi dan fungsi invers

1. komposisi fungsi dan fungsi invers


Bab Fungsi

1) domain y= √x --> x ≥0
(x² + x -6)/(1-x²) ≥ 0
(x² +x - 6)(1-x²) ≥ 0 dengan  1-x² ≠ 0
(x+3)(x-2)(1-x)(1+x) ≥ 0 dengan x≠ 1 atau x≠ -1
x = - 3, x = 2 , x = 1 , x = - 1
dgn garis bilangan agar bernilai (+)
.

....--...(-3)...++....-1...--...1...++...(2)... --....
HP  -3 ≤ x < -1 atau  1 < x ≤ 2

2) .
g(x+2) = x²+4
g(1)= ...
x+2 = 1
x = -1
g(1)= (-1)² + 4 = 5

fog(1)= f {g(1)} = f (5)
.
f(2x+1) = 4x²+8x + 1
f(5) = ...
2x+1 = 5
2x = 4
x = 2
f(5) = 4(2²) + 8(2) + 1
f(5)= 16 + 16 + 1
f(5) = 33

fog(1)=f(5) = 33

3) g(x)= x+2 --> g⁻¹(x)= x-2
g⁻¹ o f (x)= 5x² - 3x
g⁻¹ {f(x)} =  5x² - 3x
f(x) - 2 = 5x² -3x
f(x)= 5x² -3x + 2
.

2. fungsi komposisi dan fungsi invers


fungsi komposisi dan fungsi invers adalah jika terdapat 2 buah fungsi, mis : f(x) dengan g(x) dapat dibentuk fungsi baru dengan menggunakan prinsip operasi komposisi. 

3. Fungsi komposisi dan fungsi invers.


4. invers dari fungsi [tex]f(x)=\frac{9x-5}{2}[/tex] adalah [tex]\boldsymbol{f^{-1}(x)=\frac{2x+5}{9}}[/tex].

5. invers dari fungsi [tex]f(x)=\frac{7x-9}{5-2x}[/tex] adalah [tex]\boldsymbol{f^{-1}(x)=\frac{5x+9}{7+2x}}[/tex].

PEMBAHASAN

Fungsi invers adalah fungsi kebalikan dari fungsi asalnya. Fungsi invers ditulis sebagai berikut:

[tex]f(x)=y~\to~x=f^{-1}(y)[/tex]

Pangkat -1 merupakan lambang dari invers.

Contoh-contoh fungsi invers :

[tex]f(x)=x~\to~f^{-1}(x)=\frac{1}{x}[/tex]

[tex]f(x)=x+a~\to~f^{-1}(x)=x-a[/tex]

[tex]f(x)=\frac{ax+b}{cx+d} ~\to~f^{-1}(x)=\frac{-dx+b}{cx-a}[/tex]

.

DIKETAHUI

[tex]4.~f(x)=\frac{9x-5}{2}[/tex]

[tex]5.~f(x)=\frac{7x-9}{5-2x}[/tex]

.

DITANYA

Tentukan fungsi inversnya.

.

PENYELESAIAN

SOAL 4

[tex]f(x)=\frac{9x-5}{2}[/tex]

Misal :

[tex]y=\frac{9x-5}{2}~~~...kali~silang[/tex]

[tex]9x-5=2y[/tex]

[tex]9x=2y+5[/tex]

[tex]x=\frac{2y+5}{9}[/tex]

Substitusi y = x :

[tex]y=\frac{2x+5}{9}[/tex]

Maka :

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=\frac{2x+5}{9}[/tex]

.

.

SOAL 5

[tex]f(x)=\frac{7x-9}{5-2x}[/tex]

Misal :

[tex]y=\frac{7x-9}{5-2x}~~~...kali~silang[/tex]

[tex]7x-9=y(5-2x)[/tex]

[tex]7x-9=5y-2yx[/tex]

[tex]7x+2yx=5y+9[/tex]

[tex](7+2y)x=5y+9[/tex]

[tex]x=\frac{5y+9}{7+2y}[/tex]

Substitusi y = x :

[tex]y=\frac{5x+9}{7+2x}[/tex]

Maka :

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=\frac{5x+9}{7+2x}[/tex]

.

KESIMPULAN

4. invers dari fungsi [tex]f(x)=\frac{9x-5}{2}[/tex] adalah [tex]\boldsymbol{f^{-1}(x)=\frac{2x+5}{9}}[/tex].

5. invers dari fungsi [tex]f(x)=\frac{7x-9}{5-2x}[/tex] adalah [tex]\boldsymbol{f^{-1}(x)=\frac{5x+9}{7+2x}}[/tex].

.

PELAJARI LEBIH LANJUTMencari fungsi invers : https://brainly.co.id/tugas/37733114Mencari nilai fungsi invers : https://brainly.co.id/tugas/37643701Mencari nilai fungsi invers : https://brainly.co.id/tugas/32650767

.

DETAIL JAWABAN

Kelas : 10

Mapel: Matematika

Bab : Fungsi

Kode Kategorisasi: 10.2.3

Kata Kunci : fungsi, invers, kebalikan.


4. FUngsi invers dan komposisi


(gof)(x) = g{f(x)}
= x(4x+2) - 3 : x(4x+2) + 1
= 4x^2 + 2x - 3 : 4x^2 + 2x +1

(gof)(x) = 4x^2+2x-3/4x^2+2x+1

5. invers fungsi komposisi


Kelas : X
Mata Pelajaran : Matematika Wajib
Bab : Invers dan Komposisi Fungsi

a. f⁻¹(14)
f(x) = a
f⁻¹(a) = x
f(x) = x - 2
f⁻¹(x-2) = x
y = x-2
x = y + 2
f⁻¹(x) = x + 2
f⁻¹(14) = 14 + 2
f⁻¹(14) = 16

b. g⁻¹(14)
g(x) = x² + 4x - 7
g⁻¹(x² + 4x - 7) = x
y = x² + 4x - 7
x² + 4x = y + 7
(x + 2)² - 4 = y + 7
(x + 2)² = y + 11
x + 2 = √y+11
x = -2 + √y+11
g⁻¹(x) = -2 + √x+11
g⁻¹(14) = -2 + √14+11
g⁻¹(14) = -2 + √25
g⁻¹(14) = -2 + 5
g⁻¹(14) = 3

c. f o g⁻¹(14)
f o g(x) = f(g(x))
f o g(x) = x²+4x-7 - 2
f o g(x) = x² + 4x -9
f o g⁻¹(x²+4x-9) = x
y = x² + 4x -9
x² + 4x = y + 9
(x+2)² - 4 = y + 9
(x+2)² = y + 13
x + 2 = √y+13
x = -2 + √y+13
f o g⁻¹(x) = -2 + √x+13
f o g⁻¹(14) = -2 + √14+13
f o g⁻¹(14) = -2 + √27
f o g⁻¹(14) = -2 + 3√3

d. g o f⁻¹(14) 
g o f(x) = (x-2)² + 4(x-2) - 7
g o f(x) = x² - 4x + 4 + 4x - 8 -7
g o f(x) = x² -11
g o f⁻¹(x²-11) = x
y = x² - 11
x² = y + 11
x = √y+11
g o f⁻¹(x) = √x+11
g o f⁻¹(14) = √14+11
g o f⁻¹(14) = √25
g o f⁻¹(14) = 5

6. Invers Komposisi Fungsi!​


f(x) = ¼x -8

g(x) = 2x + 5

notes : anggap aja tanda (') disini itu invers yaa bukan turunan karwna saya gabis nulis ^-1 secara -¹

Bagian A

Cara mencari invers adalah dengan mengubah x menjadi f'(x) dan f(x) menjadi x karena fungsi invers bersifat terbalik dari fungsi sebelumnya

f(x) = ¼x -8

x = ¼ f'(x) -8

¼ f'(x) = x + 8

f'(x) = 4 (x + 8)

f'(x) = 4x + 32

f'(-5) = 4(-5) + 32 = -20 + 32

f'(-5) = 12

Bagian B

Cara mencari invers adalah dengan mengubah x menjadi g'(x) dan g(x) menjadi x karena fungsi invers bersifat terbalik dari fungsi sebelumnya

g(x) = 2x + 5

x = 2 g'(x) + 5

2 g'(x) = x -5

g'(x) = ½ (x -5)

g'(-5) = ½ (-5 -5) = ½ (-10)

g'(-5) = -5

Bagian C

(f o g) (x) :

= f( g(x) )

= ¼ g(x) -8

= ¼ (2x + 5) -8

= ½x + 5/4 -8

= ½x -27/4

= ¼ (2x -27)

misal y = (f o g)(x), maka cara mencari invers adalah dengan mengubah x menjadi y' dan y menjadi x karena fungsi invers bersifat terbalik dari fungsi sebelumnya

y = ¼ (2x -27)

x = ¼ (2y' -27)

2y' -27 = 4x

2y' = 4x + 27

y' = ½ (4x + 27)

(f o g)'(x) = ½ (4x + 27)

(f o g)'(-5) = ½ (4(-5) + 27) = ½ (7)

(f o g)'(-5) = 7/2

Bagian D

(g o f) (x) :

= g( f(x) )

= 2 f(x) + 5

= 2 (¼x -8) + 5

= ½x -16 + 5

= ½x -11

misal b = (g o f)(x), maka cara mencari invers adalah dengan mengubah x menjadi b' dan b menjadi x karena fungsi invers bersifat terbalik dari fungsi sebelumnya

b = ½x -11

x = ½b' -11

½b' = x + 11

b' = 2x + 22

(g o f)'(x) = 2x + 22

(g o f)'(-5) = 2(-5) + 22 = -10 + 22

(g o f)'(-4) = 12


7. Invers dari komposisi fungsi


Semoga membantu dan maaf kalau ada kesalahan


8. Sifat fungsi invers pada fungsi komposisi


Jawaban:

jawaban tertera di gambar, semoga bermanfaat


9. Fungsi invers pada komposisi


Jawab:

Fungsi invers adalah pemetaan yang memiliki arah berlawnan dengan fungsinya. Misalkan suatu fungsi mematakan dari himpunan A ke B. Maka, yang dimaksud fungsi invers adalah fungsi yang memetakan dari B ke A. Pada halaman ini, sobat idschool akan mempelajari fungsi invers dan sifat fungsi invers pada komposisi fungsi

Penjelasan dengan langkah-langkah:

Misalkan suatu fungsi f(x) memiliki invers f^{-1}(x) dan g(x) memiliki invers g^{-1}(x). Komposisi f(x) dan g(x) juga akan memiliki invers. Komposisi invers ini memiliki sifat fungsi invers yang akan dijelaskan kemudian.

Pada gambar sebelah kiri ditunjukkan sebuah fungsi f(x) yang memiliki fungsi invers f^{-1}(x). Gambar di sebelah kanan adalah komposisi dua buah fungsi dan inversnya.

 

Sebelum membahas mengenai sifat invers pasa komposisi fungsi. Kita akan mempelajari terlabih dahulu proses mencari invers dari suatu fungsi. Penjelasan akan disajikan dalam bentuk soal dan pembahasan, jadi simak soal dan pembahasan tentang invers fungsi di bawah dengan baik.

Tentukan invers dari fungsi f(x) di bawah!

 \[ f(x) = \frac{4x - 3}{x + 2}\]

Pembahasan:

Misalkan f(x) = y, maka

 \[ y = \frac{4x - 3}{x + 2}\]

 \[ y \left( x + 2 \right) = 4x - 3 \]

 \[ xy + 2y = 4x - 3 \]

 

 \[ xy - 4x = - 3 - 2y \]

 \[ x \left( y - 4 \right) = - 3 - 2y \]

 \[ x  = \frac{- 3 - 2y}{ y - 4 } \]

 \[ x  = \frac{-\left(3 + 2y \right)}{ - \left(4 -  y \right)} \]

 \[ x  = \frac{3 + 2y}{4 - y} \]

Berdasarkan persamaan akhir di atas dapat disimpulkan bahwa fungsi invers dari f(x) adalah

 \[ f^{-1}(x)  = \frac{3 + 2x}{4 - x} \]

Bagaimana, mudah bukan?

Cara menentukan invers suatu fungsi, seperti cara di atas, memang cukup panjang. Sebenarnya, ada rumus praktis untuk menentukan suatu fungsi invers. Meskipun demikian, sebaiknya sobat idschool sudah menguasai konsep pencarian invers suatu fungsi di atas terlebih dahulu. Hal ini akan bermanfaat untuk sobat idschool nantinya, juga akan bermanfaat ketika sobat idschool lupa rumus cepatnya.

Cara cepat mencari sebuah fungsi invers untuk bentuk tertentu dapat diperoleh dengan cara berikut.

Rumus cepat mencari invers fungsi

Kita akan menggunakan cara cepat mencari invers fungsi untuk menyelesaikan persoalan yang sama pada soal dan pembahasan invers fungsi di atas.

 \[ f(x) = \frac{4x - 3}{x + 2} \]

 \[ f^{-1}(x) = \frac{-2x - 3}{x - 4} \]

 \[ f^{-1}(x) = \frac{- \left( 2x + 3 \right)}{- \left(4 - x \right)} \]

 \[ f^{-1}(x) = \frac{2x + 3}{4 - x} = \frac{3 + 2x}{4 - x} \]

Bagaimana? Hasilnya sama bukan dengan cara sebelumnya? Selanjutnya kita akan mempelajari sifat invers suatu fungsi.

Baca Juga: Relasi dan Fungsi: Pengertian, Perbedaan, dan Contoh Soal

 

 

Sifat Invers pada Komposisi Fungsi

Pembahasan sifat invers pada komposisi fungsi mempelajari hubungan kesamaan suatu fungsi invers dengan kesamaan lainnya. Sifat invers pada komposisi fungsi dapat membuat sobat idschool lebih tepat dalam menentukan langkah yang tepat untuk menyelesaikan variasi soal yang diberikan terkait komposisi fungsi.

Sifat Fungsi Invers pada komposisi fungsi dapat dilihat pada gambar di bawah.

Sifat Fungsi Invers

 

 

Contoh Soal dan Pembahasan

Contoh Soal Fungsi Invers Komposisi Fungsi

Jika f(x) = x + 2 dan g(x) = \frac{3 - x}{2x + 1} maka \left(f \circ g \right)^{-1}(x) adalah ….

 \[ \textrm{A.} \; \; \; \frac{x - 6}{5 - 2x} \]

 \[ \textrm{B.} \; \; \; \frac{x - 6}{2x - 5} \]

 

 \[ \textrm{C.} \; \; \; \frac{x + 6}{2x - 5} \]

 \[ \textrm{D.} \; \; \; \frac{x - 6}{2x + 5} \]

 \[ \textrm{E.} \; \; \; \frac{2x - 5}{x + 6} \]

Pembahasan:

 \[ \left(f \circ g \right)(x) = f \left( g(x) \right) \]

 \[ \left(f \circ g \right)(x) = f \left( \frac{3 - x}{2x + 1} \right) \]

 \[ \left(f \circ g \right)(x) = \frac{3 - x}{2x + 1} + 2 \]

 \[ \left(f \circ g \right)(x) = \frac{3 - x + 2(2x + 1)}{2x + 1} \]

 \[ \left(f \circ g \right)(x) = \frac{3 - x + 4x + 2)}{2x + 1} \]

 \[ \left(f \circ g \right)(x) = \frac{3x + 5)}{2x + 1} \]

Dengan cara cepat mencari fungsi invers, kita dapat secara mudah menentukan \left(f \circ g \right)^{-1}(x).

 \[ \left(f \circ g \right)^{-1}(x) = \frac{-x + 5}{2x - 3} \]

 \[ \left(f \circ g \right)^{-1}(x) = \frac{- \left(x - 5 \right)}{ - \left(3 - 2x \right) } \]

 \[ \left(f \circ g \right)^{-1}(x) = \frac{x - 5}{ 3 - 2x} \]

Jawaban: A


10. fungsi invers komposisi


maaf ya kalo salah .....

11. soal fungsi komposisi dan fungsi invers​


Jawab:

1. Jika  

f

(

x

)

=

a

x

+

b

maka  

f

(

z

)

=

a

z

+

b

atau  

f

(

g

(

x

)

)

=

a

g

(

x

)

+

b

(

f

g

)

(

x

)

=

f

(

g

(

x

)

)

(

f

g

)

1

(

x

)

=

(

g

1

f

1

)

(

x

)

(

f

1

f

)

(

x

)

=

I

(

x

)

(

f

1

)

1

(

x

)

=

f

(

x

)

Jika  

f

(

x

)

=

a

x

+

b

c

x

+

d

maka  

f

1

(

x

)

=

d

x

+

b

c

x

a

Jika  

f

(

a

)

=

b

maka  

f

1

(

b

)

=


12. fungsi komposisi & invers


Jawab:


Penjelasan dengan langkah-langkah:



13. Pengertian fungsi, fungsi komposisi, dan invers


Fungsi KomposisiSyarat Suatu fungsi dapat dikomposisikan jika daerah hasil dari  adalah himpunan bagian dari daerah asal g. Aturan fungsi komposisi : Apabila terdapat fungsi (x), g(x) dan h(x), maka :  o g(x) = (g(x))g o (x) = g((x))h o g o (x) = h (g((x))) Invers fungsi merupakan hubungan kebalikan dari suatu fungsi. Maka dapat dituliskan : Jika fungsi  : A → B yang mempunyai peta (a) = b, maka invers  adalah fungsi g : B → A dengan peta g(b) = a Dapat dinyatakan dengan :      g  =  -1

14. Invers fungsi komposisi


Penjelasan dengan langkah-langkah:

Nomor 1

( f o g )(x) = f( g ( x ) )

( f o g )(x) = f( 2x - 5 )

( f o g )(x) = 2x - 5 +5

( f o g )(x) = 2x

Misalkan ( f o g )(x) = y

y = 2x

[tex]x=\frac{1}{2}y[/tex]

[tex]\boxed{(f\:o\:g)^{-1}(x)=\frac{1}{2}x}[/tex]

Nomor 2

( g o f )(x) = g( f ( x ) )

( g o f )(x) = g( x + 5 )

( g o f )(x) = 2 ( x + 5 ) - 3

( g o f )(x) = 2x + 10 - 3

( g o f )(x) = 2x + 7

Misalkan ( g o f )(x) = y

y = 2x + 7

y - 7 = 2x

[tex]x=\frac{y-7}{2}[/tex]

[tex]\boxed{(g\:o\:f)^{-1}(x)=\frac{x-7}{2}}[/tex]

Semoga bermanfaat!!!

catatan: jika penyelesaian tidak terbuka pada aplikasi, harap membuka brainly menggunakan browser


15. invers fungsi komposisi


Uraian dalam lampiran
semoga membantu

16. komposisi fungsi invers


semoga membantu.....

17. soal fungsi komposisi dan fungsi invers


ini contoh soalnya: misalkan fx= x^2 + 2x +1
dan gx= 2x + 3
tentukan:
a. f invers( f^-1)
b. fog
c. gof
d. fog invers
e. gof invers
f.fogof invers

18. invers fungsi komposisi


f(x) = x - 2
y = x - 2
x = y + 2
(f(x))^-1 = x + 2
(f(14))^-1 = 14 + 2
(f(14))^-1 = 16

g(x) = x² + 4x - 7
y = x² + 4x - 7
y + 7 = x² + 4x
y + 7 = (x + 2)² - 4
y + 7 + 4 = (x + 2)²
y + 11 = (x + 2)²
x + 2 = √(y + 11)
x = -2 + √(y + 11)
(g(x))^-1 = -2 + √(x + 11)
(g(14))^-1 = -2 + √(14 + 11)
(g(14))^-1 = -2 + √25
(g(14))^-1 = -2 + 5
(g(14))^-1 = 3

((fog)(x))^-1
= (g^-1 o f^-1)(x)

((fog)(14))^-1
= (g^-1 o f^-1)(14)
= (g((f(14))^-1)^-1
= (g(16))^-1
= -2 + √(16 + 11)
= -2 + √36
= -2 + 6
= 4

((gof)(x))^-1
= (f^-1 o g^-1)(x)

((gof)(14))^-1
= (f^-1 o g^-1)(14)
= (f(g(14))^-1)^-1
= (f(3))^-1
= 3 + 2
= 5


19. Komposisi dan Invers Fungsi


semoga membantu......

20. MANFAAT FUNGSI KOMPOSISI DAN FUNGSI INVERS


Fungsi Komposisi diartikan sebagai pembentuk fungsi baru, sedangkan invers diartikan sebagai kebalikan.
Manfaat Fungsi Komposisi:
1. Untuk Proses pembuatan buku (adan 2 tahap)
2. Untuk proses pembuatan emas menjadi perhiasan
3. Untuk mesin pencetak yang menggunakan komposisi warna.
4. Untuk mendaur ulang logam campuran kemudian dihancurkan menjadi serpihan kecil.

Manfaat fungsi Invers:
1.Mempermudah dalam mencari jawaban dari posisi bilangan manapun.
2.Digunakan untuk meramal suatu kejadian fisis atau dimensi berdasarkan variable yang memengaruhi kejadian fisis atau dimensi tersebut.

Maaaf kalo salah...

Video Terkait

Kategori matematika